Cyclotomic fields

Results: 75



#Item
11Field theory / Number theory / Cyclotomic fields / Class field theory / Algebraic number theory / Iwasawa algebra / Iwasawa theory / Selmer group / Torsion / Algebraic number field / Complex multiplication / Elliptic curve

443 Documenta Math. Completely Faithful Selmer Groups over Kummer Extensions

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2003-12-22 16:28:38
12Number theory / Algebraic number theory / Cyclotomic fields / Class field theory / Field theory / Elliptic curve / Main conjecture of Iwasawa theory / Complex multiplication / TateShafarevich group / P-adic Hodge theory / Iwasawa theory / Selmer group

Some remarks on the pseudo-nullity conjecture for zero Selmer groups of elliptic curves Yoshihiro Ochi (Tokyo Denki University) 1

Add to Reading List

Source URL: staff.miyakyo-u.ac.jp

Language: English - Date: 2008-10-20 03:03:04
13Number theorists / Cyclotomic fields / Field theory / Galois theory / Number theory / Galois module / Ralph Greenberg / P-adic L-function / Iwasawa theory / Haruzo Hida / P-adic number / John H. Coates

Documenta Mathematica Extra Volume: John H. Coates’ Sixtieth Birthday, 2006 Preface 1

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2006-11-24 17:49:13
14Class field theory / Field theory / Cyclotomic fields / Algebraic number theory / Algebraic geometry / Conductor / Iwasawa theory / Algebraic number field / Complex multiplication / Motive / Dirichlet L-function / Artin reciprocity law

73 Documenta Math. On the Equivariant Tamagawa Number Conjecture

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2006-05-06 08:16:28
15Number theory / Algebra / Polynomials / Cyclotomic polynomial / Finite field / Partition / Weil conjectures / Factorization of polynomials over finite fields

Multiplicative Order of Gauss Periods Omran Ahmadi Department of Electrical and Computer Engineering University of Toronto Toronto, Ontario, M5S 3G4, Canada

Add to Reading List

Source URL: www.ma.utexas.edu

Language: English - Date: 2007-07-11 21:30:10
16Algebraic number theory / Galois theory / Class field theory / Field theory / Cyclotomic fields / Algebraic number field / Main conjecture of Iwasawa theory / Selmer group / Iwasawa theory / Galois module / Splitting of prime ideals in Galois extensions / Local class field theory

615 Documenta Math. Kida’s Formula and Congruences To John Coates, for his 60th birthday

Add to Reading List

Source URL: www.math.uiuc.edu

Language: English - Date: 2006-11-21 15:14:31
17Field theory / Modular forms / Number theory / Cyclotomic fields / Algebraic number theory / Main conjecture of Iwasawa theory / Craig interpolation / Algebraic number field / P-adic modular form / Iwasawa theory / P-adic L-function / Distribution

807 Documenta Math. Several Variables p-Adic L-Functions for Hida Families of Hilbert Modular Forms

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2012-12-12 12:22:36
18Field theory / Number theory / Cyclotomic fields / Class field theory / Algebraic number theory / Iwasawa algebra / Iwasawa theory / Selmer group / Torsion / Algebraic number field / Complex multiplication / Elliptic curve

443 Documenta Math. Completely Faithful Selmer Groups over Kummer Extensions

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2003-12-22 16:28:38
19Field theory / Number theory / Algebraic number theory / Cyclotomic fields / P-adic number / P-adic modular form / Cyclotomic character / Valuation / P-adic L-function / ZP / Prime number / Iwasawa theory

387 Documenta Math. Coleman Power Series for K2 and p-Adic Zeta Functions

Add to Reading List

Source URL: documenta.sagemath.org

Language: English - Date: 2003-12-23 07:52:17
20Algebraic number theory / Modular arithmetic / TonelliShanks algorithm / Field theory / Cyclotomic unit / Trigonometry in Galois fields

The Tonelli-Shanks algorithm Ren´e Schoof, Roma 20 dicembre 2008 let p > 2 be prime. We describe an algorithm (due to A. Tonelli (Atti Accad. Linceiand D. Shanks (1970ies)) to compute a square root of a given sq

Add to Reading List

Source URL: www.mat.uniroma2.it

Language: English - Date: 2009-01-31 17:59:10
UPDATE